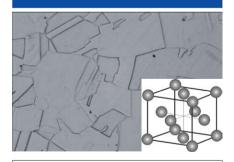

會與用不銹鋼材螺絲

文 / Jozef Dominik

簡介

不銹鋼材在機械緊固理論和實際應用中扮演重要角色。由於不銹鋼是螺絲生產製造不可忽略的材料,其使用範圍不斷增加。

使用不銹鋼生產螺絲的設計考量,在於螺絲的使用環境條件。當氣候極端,腐蝕風險持續增加。從強度觀點而論,這些不銹鋼在許多實例使用中雖然無法取代,但都未達到硬化鋼材的品質(圖一)。



圖一 各種鋼材的強度 [Rm]

根據微結構的主要成份,不銹鋼鋼材可分類為沃斯田鐵、麻田散鐵和肥粒鐵,如表一所示。

表一用於生產螺栓和螺帽的不銹鋼材

沃斯田鐵 A1 - A2 - A3 - A4 - A5

成分約含 18% 鉻 [Cr] 和 8% 鎳 [Ni]。若要提高抗銹蝕性則添加鉬 [Mo] (上述 A4 鋼材群組)。這種鋼材無法硬化,只能以機械硬化方式達到較高強度。這類鋼材具有順磁性。

麻田散鐵 C1 - C3 - C4

麻田散鐵不銹鋼是唯一可硬化的不銹鋼材,具有鐵磁性。成分約含 12% 鉻 [Cr]、0.12% 碳 [C],其餘為鐵 [Fe]。 典型的例子如 Marutex® 自攻螺絲。

肥粒鐵不銹鋼

成分約含 17% 鉻 $\{Cr\}$ 、0.02% 碳 $\{C\}$ 。因為韌性低,無法硬化,實際用例非常少。

沃斯田鐵鋼

這種鋼材是使用最廣泛的一種不銹鋼。基本合金系統組成是鉻 (Cr)、鎳 (Ni) 或鉬 (Mo)。由於鎳 (Ni) 能夠使相變 $\gamma \rightarrow \alpha$ 開始溫度移到冰點以下,這些鋼體在一般溫度下仍處於沃斯田鐵狀態,因而無法以一般熱處理方式硬化。機械冷強化加工可提升強度值到 800 N/mm²,自然狀態下的商業值 500 N/mm²,輕度機械強化 700 N/mm²。沃斯田鐵因其立方體狀方心元素晶格結構,在一般情況下具有順磁性。冷成型後可以達到特定的磁性,以磁導率 μ_r 表示 (表二)。

表二沃斯田鐵不銹鋼的磁導率

鋼材類型	A2	Α4	F1
磁導率 μ,	~1.8	~1.05	~3.5

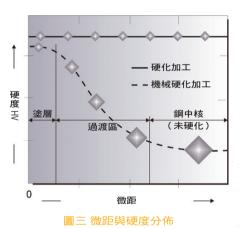
注意: 鋼在零磁性時 µr = 1

沃斯田鐵不銹鋼區分為下列 A1-A5 次群組:

A 1	防銹蝕鋼材,含有 S 成分, 可改善加工性 。
A2	路鎳鋼,具有優良的耐腐 蝕性能,並且適用於製造 食品加工的機械產品。可 耐低溫。
A4	鉻鎳鉬鋼,具耐蝕和抗酸性。使用在製造經常暴露海水鹽霧水汽作用的零組件,同樣也適用於食品加工以及低溫用途。
A3 A5	沃斯田鐵,硬化方式是利 用鈦、鈮或鉭來抑制晶間 腐蝕發生。
FA -	

除了 A1 群組之外,其餘的沃斯田 鐵不銹鋼都相當容易/適宜焊接。

B. 麻田散鐵不銹鋼


這種鋼材是唯一能夠被硬化的不銹鋼類型,也就是在沃斯田鐵處理後 施以淬火和回火處理。最終微結構成分是麻田散鐵,即呈立方體狀空間中 心元素晶格 α 相結構。這種鋼材具有鐵磁性;著名的 Marutex® 不銹鋼自 攻螺釘就是以這種鋼材製造(圖二)。

圖二由麻田散鐵不銹鋼製成的自攻螺釘

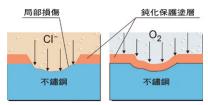
C. 肥粒鐵不銹鋼

最終微結構成分是肥粒鐵,呈立方體狀,空間中心元素呈現晶格結構。 碳含量低,因此,這些鋼材無法硬化,機械強化方式可以提昇強度。這種 鋼材具有鐵磁性,因為不具顯著功能,所以這種鋼材實用例很少。

所有不銹鋼類型的一般強度 是自然狀態下的強度(介於500 到 600 N/mm² 之間)。麻田散鐵 鋼的強度提升(從700到800 N/ mm²),可藉由硬化加工以及機械 冷強化加工沃斯田鐵和肥粒鐵鋼。 硬化加工時,整個成分結構內部會 產生同質而無硬度梯度的微結構, 機械強化後,硬度增加的部位僅限 於表層,而所謂的核心仍然維持原 始自然狀態(圖三)。這種方法的 優點是螺紋表面可順勢受到滴當的 應力。

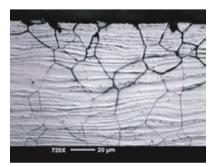
使用和風險

堅固件不銹鋼的使用依據 ISO 3506 標準規範。通常合金元素為 鉻,以其高親氧性;因此,與空氣 接觸時可迅速在鋼材表面形成一層 透明的氧化薄膜。這個氧化薄層促 成塗層的鈍化和抗蝕性能。換句話 說,沒有氫氣,不銹鋼就不具抗蝕 性。若要提高抗蝕性,可添加鎳 (Ni) 和鉬(Mo)。形成鈍化塗層, 可以藉由人工使用 20~40℃ 硝酸 (HNO3) 浸漬 10~20 分鐘誘發的方 式達成。

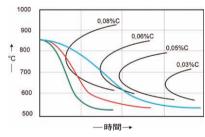

不銹鋼或其他鋼材雖然不是抗 蝕的萬靈丹,但在大多數情況,上 述鈍化塗層可提供鋼製部件足夠的 抗蝕性。特定條件下,腐蝕可能導 致災難性的後果。

如表三所示,不銹的鉻鎳(Cr-Ni) 鋼幾平完全無法抵抗氯離子 (CI-) 的侵入。室內游泳池是典型例 子, 鉻鎳鋼製部件飽含具有侵蝕性 的氯離子水汽,因為游泳池添加漂 白粉消毒水質。這些水汽沖刷鋼製 部件表面,阻礙鈍化保護塗層的形 成。

空氣條件若是充足,不銹鋼表 面局部的機械損傷(如圖四)可以 迅速再生自動修補受損部位,持續 抗蝕防護功能。


表三 材料的抵抗性

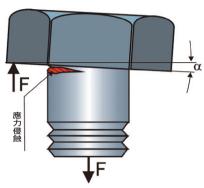
材料	鋅 (Zn)	Ms 63	銅 (Cu)	合金鋼	鉻鎳不銹鋼 (Cr-Ni) 18/9	
環境	材料減損[μπ/年]					
室內	1 ÷ 3	4	2	60	< 2	
戶外	6	4	2	70	< 2	
工業大氣層	6 ÷ 19	8	4	170	< 2	
海濱空氣	2 ÷ 15	6	3	170	< 2	
海水	90	15 ÷ 100	15 ÷ 30	170	< 2	
鹽酸 (HCl)	無抗性	無抗性	30	無抗性	2100	
二氧化硫 (H₂SO₄)	無抗性	15 ÷ 150	8	無抗性	< 2	
氫氧化鈉 (NaOH)	無抗性	75	8	相對抗性	~ 5	



圖四 不銹鋼表面自動再生

不銹鋼腐蝕的另一例子有關 晶格結構,如**圖五**所示。問題發 生主要在的晶粒部位,由於鉻與 碳化物的排出,加上鍛造或焊接 後降溫冷卻速率緩慢,或是鋼材 的碳含量過高,造成鋼固溶體 (基體) 鉻遞降至臨界值以下(圖 六)。鋼材的碳含量越高,越容 易產生晶間腐蝕。

圖五 不銹鋼晶間腐蝕(維基百科)


圖六 不銹鋼的轉換

安全措施:

- 1. 採用浸入液體方式加速鍛造或 焊接後的冷卻。冷卻速率不能 太快,以免產生龜裂。
- 2. 鋼材的穩定化依賴鉭、鈮或鈦 金屬的合金(A3, A5 鋼材)
- 3. 熱鍛鋼的碳含量不應超過 0.05%含量值。

當然,發生在同步進行的拉 伸荷載加工過程的腐蝕也不能忽 視。這種情況可能發生,例如閥

座表面與螺旋軸不垂直(圖七), 結果頭部下方產生的龜裂很容易 成為周圍環境侵蝕的部位。這是 非常危險的情況,因為這個部位 的龜裂無法以肉眼看見,通常最 後結果是螺絲頭部斷裂。

圖七,螺絲頭部下方龜裂

我們討論不銹鋼材使用的風 險,不可忽略材料組合不正確可 能導致螺絲和螺帽所謂「冷焊接」 的不良(圖八)。這樣的接合, 實際上不可能以一般工具拆卸。 有效的預防措施是在裝配前在螺 紋上塗上特殊接合劑。

圖八 A2 鋼製螺帽 「冷焊接」不良情形

結論

不銹鋼具有不需爭議的實用 性,在機械接合技術領域,許多 應用情況下也具有不可替代的地 位。緊固件生產比例上不斷上升 就是一個明顯的證據。但是,不 銹鋼無論如何也不能看作是防蝕 萬靈丹。正如上文所示,不銹鋼 性能各異,有必要隨其不同性能 作正確使用; 唯有如此, 不銹鋼 才能夠完成原先開發設計所賦予 應有的功能。

抽芯鉚釘

組裝機

文 / Anthony Di Maio

設計了這個抽芯鉚釘組裝 目前已在業界中使用。

組裝機結構簡介

此組裝機包含兩個送料盤,圖 所示為半徑 1/8(3.2mm)的鉚 釘本體。兩個送料盤送料速率是每 分鐘 1.000 個鉚釘本體和芯軸。另 外,此組裝機還配置有鉚釘本體和 芯軸的補料斗(圖片未顯示),以 確保送料盤內鉚釘本體和芯軸的數 量維持穩定。若要送料盤內的重量 維持穩定,必須保持1,000個工件 的送料速率。鉚釘本體從送料盤進 料的方向是筒管朝下。下行軌道因 為有 180 度的轉彎弧度,所以鉚釘 本體送到組裝機台的方向是筒管朝 上。鉚釘本體的送料盤將鉚釘本體 從組裝機送出,進入弧度 180 度的 轉彎軌道,然後將鉚釘本體以管筒 朝上的方式運送到組裝機台。180 度轉彎軌道讓鉚釘本體筒管朝下進 入,筒管朝上送出。

▲ 圖一 送料盤

芯軸轉盤在機身左邊(圖 二),以順時針方向轉動。鉚釘本 體轉盤在右邊,以順時針方向轉 動。共有4個芯軸推桿,其沖程為 0.625(15.87mm)。每個推桿依不